An Analysis Dictionary Learning Algorithm under a Noisy Data Model with Orthogonality Constraint

نویسندگان

  • Ye Zhang
  • Tenglong Yu
  • Wenwu Wang
چکیده

Two common problems are often encountered in analysis dictionary learning (ADL) algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high), as represented by the Analysis K-SVD (AK-SVD) algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST) algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure) and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

STRUCTURAL DAMAGE PROGNOSIS BY EVALUATING MODAL DATA ORTHOGONALITY USING CHAOTIC IMPERIALIST COMPETITIVE ALGORITHM

Presenting structural damage detection problem as an inverse model-updating approach is one of the well-known methods which can reach to informative features of damages. This paper proposes a model-based method for fault prognosis in engineering structures. A new damage-sensitive cost function is suggested by employing the main concepts of the Modal Assurance Criterion (MAC) on the first severa...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Robust Non-Negative Dictionary Learning

Dictionary learning plays an important role in machine learning, where data vectors are modeled as a sparse linear combinations of basis factors (i.e., dictionary). However, how to conduct dictionary learning in noisy environment has not been well studied. Moreover, in practice, the dictionary (i.e., the lower rank approximation of the data matrix) and the sparse representations are required to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014